冲压模厂家
免费服务热线

Free service

hotline

010-00000000
冲压模厂家
热门搜索:
成功案例
当前位置:首页 > 成功案例

做座虚拟柔性制造系统仿真的研究

发布时间:2021-10-15 01:20:22 阅读: 来源:冲压模厂家

虚拟柔性制造系统仿真的研究

机械制造系统是一个复杂的系统,系统输入的是与制造有关的物料、设备、工具、能源、人员、制造理论、制造工艺和制造信息等,输出的是一个合格的具有一定功能的产品。制造系统的复杂性表现在:制造环境、制造产品和制造系统结构和制造过程的复杂性上。面对如此复杂的系统,要使产品达到TQCS最优,需要严格控制制造的各个环节,得到局部最优乃至全局最优目标。而这一切需要对整个制造过程进行建模,目前研究的热点之一就是虚拟制造技术。

柔性制造系统(Flexible Manufacturing System,简称FMS)是由数控加工设备、物料运储装置和计算机控制系统等组成的自动化制造系统,它包括数控机床、加工中心、车削中心等,也可能是柔性制造单元,能根据制造任务或生产环境的变化迅速进行调整。要采用虚拟制造技术来正确模拟柔性制造系统的制造过程,主要开展两方面的工作,一是真实模拟该制造系统中加工设备的功能:二是对整个柔性制造系统在“一”的基础上正确规划生产过程,以便获得对整个产品可制造性的全面评估。

“虚拟柔性制造系统系统仿真研究”项目从2003年5月~2005年5月得到西南交通大学科技发展基金的支持。该项目以柔性制造系统为原型研究对象,从系统论的角度,按照复杂系统的观点对对虚拟柔性制造系统进行理论建模,对虚拟柔性制造系统仿真的关键技术进在小变形条件下行研究。重点研究加工过程的工艺信息建模,工艺系统几何建模、运动建模和物理效应建模,并对加工过程工序进行规划运动模拟、对NC代码进行检验和刀具轨迹模拟。以此研究零件可加工性的评判因素和机理,建立工艺评价的优化模型。其最终目的是建立一个能评价工艺方案和工艺参数的基于虚拟现实的直观制造评价体系,以解决制造系统与产品市场的矛盾关系。

经过两年的研究,该项目已取得预期的成果或可以认定的技术性能指标。

1 提出基于组件的虚拟柔性制造系统建模理论及方法

柔性制造系统内部一般包括两类不同性质的运动,一类是系统的信息流,另一类是系统的物料流,物料流受信息流的控制。FMS是在加工自动化的基础上实现物料流和信息流的自动化。对柔性制造系统规划,首先要按照任务的分配,或者说是信息流的流向,对各种物理设备组成进行合理的规划和布置。由于物理设备种类的多样性、可重用性和各物理设备间对加工信息流的交互性,使其更具有自然对象的特征,可以采用基于面向对象的组件来表达。每个组件是一个对象的实例化,它们有自己的属性和行为,组件所能提供的与外界的交互行为过程就是各物理设备交互和传递信息流的过程。在典型的柔性制造系统中,这些组件有:数控车床对象、数控铣床对象、加工中心、机器人对象、堆垛机对象、立体仓库对象、搬运小车对象、输送装置对象等等。每个对象按照各物理设备自身的行为和属性进行建模,包括三维建模、运动控制建模、属性建模等。

该研究采用自然的对象描述方法,从理论上规划了虚拟FMS系统中各组件之叫的关系,为后面的功能建模提供了方法学基础。

2 提出基于三维模型的组件功能和行为建模方法

虚拟制造环境由相应的虚拟制造设备构成,每个虚拟设备相当于一个组件,该组件应能够较完整的反映物理设备的特性,如物理设备的几何特征市场的竞争力也会进1步的提高、材料特征、运动信息等。因此,必须根据真实的设备所具有的特征,对其进行数字化,建立虚拟设备模型。

虚拟设备模型是物理设备功能特征及形状特征的信息在虚拟环境中的映射。物理设备的功能特殊性决定了虚拟设备模型的几何属性,因此在构建虚拟设备模型时,可以分别从几何模型和运动控制两个方而着手,对物理设备进行功能特性与几何特征分析,将虚拟设备模型划分为几何模型和运配有专业的软件动控制模型两部分。

几何模型是对物理设备形状特征的描述,它表达了物理设备的基本形状信息,如机床的床身,工作台 以及主轴等部件的形状,这些几何模型在运动控制模型的控制下,根据外部输入的控制数据做相应的运动,这些运动可以表示为物理设备的实际行为,如工作的进给、主轴的转动、机械手的行为以及物料小车的运动等。

对虚拟设备的几何建模首先采取Pro-E、UG或Solidworks等三维造型的形式价格也较低,将各物理设备分解成功能模块部分,比如车床可分解为:床身、刀架、主轴、顶尖、机床门等,然后通过转化成基于OPENGL的模拟环境中,获得其在模型中的准确坐标,按照齐次坐标变换关系,获得一台虚拟加工车床。其他的如铣床、机器人、立体仓库、托盘等都可以按照这种方式进行。

运动控制模型反映了物理设备的各种控制功能,它根据外部输入的控制信息,进行处理,判断,并且输出相应的控制信息,驱动相关几何模型的位置和运动状态变化,实现物理模型设备行为的虚拟化。根据各物理设备的运动属性建立相应的运动系统,每个加工设备严格按照数控原理进行运动规划,确定加工坐标系统、机床原点、加工原点。按照数控插补的原理,

桂林瑞特试验机有限公司
m-2000磨损试验机
天津市精科材料试验机厂
10KN球团压力试验机